Journal of Organometallic Chemistry, 426 (1992) 1–22 Elsevier Sequoia S.A., Lausanne JOM 22295

Silaheterocyclen

XI *. Erzeugung und Cycloadditionsverhalten des Diphenylneopentylsilaethens, Ph₂Si=CHCH₂^tBu

N. Auner *, **, W. Ziche und E. Herdtweck

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstraße 4, W-8046 Garching bei München (Deutschland)

(Eingegangen den 6. August 1991)

Abstract

Diphenylneopentylsilene, $Ph_2Si=CHCH_2^{t}Bu$ (3), is prepared as a reactive intermediate by the reaction of diphenylvinylchlorosilane (1) with Li^tBu in nonpolar solvents via the α -lithioadduct $Ph_2Si(Cl)CH(Li)CH_2^{t}Bu$ (2). This lithiated species can be trapped by trimethylsilyltriflate and yields silene 3 by 1,2-LiCl-elimination. Without suitable Si=C-trapping agents, the E/Z-isomeric tetraphenyl-2,4-dineopentyl-1,3-disilacyclobutane (6) is formed by cyclodimerization. In the presence of dienes like 2,3-dimethyl (DMB)- and 2-methyl-1,3-butadiene (MBD) the Diels-Alder and ene-products are formed in competition, while the cycloaddition of 3 with norbornadiene, cyclohexa-1,3-diene, cyclopentadiene and anthracene yields the [2+2+2]- or the [4+2] products exclusively. *Exo / endo*-{2,2-diphenyl-3-(2',2'-dimethylpropyl)-2-silabicyclo[2.2.2]oct-5-ene} (19) is a crystalline solid as well as compound *E*-6, whose structures are presented in this paper.

Zusammenfassung

Diphenylneopentylsilaethen, $Ph_2Si=CHCH_2^{T}Bu$ (3), wird *in situ* durch Umsetzung von Diphenylvinylchlorsilan (1) mit Li¹Bu in unpolaren Lösungsmitteln über das α -Lithioaddukt $Ph_2Si(Cl)CH(Li)CH_2^{T}Bu$ (2) als Primärstufe erzeugt. Diese lithiierte Spezies läßt sich durch Abfangreaktion mit Trimethylsilyltriflat nachweisen und führt unter 1,2-LiCl-Eliminierung zum Silaethen 3, das in Abwesenheit weiterer Reaktionspartner unter Bildung von E/Z-isomerem Tetraphenyl-2,4-dineopentyl-1,3-disilacyclobutan (6) cyclodimerisiert; *E*-6 läßt sich einkristallin isolieren. Mit Dienen wie 2,3-Dimethyl (DMB)- und 2-Methyl-1,3-butadien (MBD) reagiert 3 unter Bildung von Diels-Alderund En-Produkten in Konkurrenz zueinander ab, während die Cycloaddition mit Norbornadien, Cyclohexa-1,3-dien, Cyclopentadien und Anthracen ausschließlich zu den [2+2+2]- bzw. [4+2]-Addukten führt. Dabei fällt *exo / endo*-{2,2-Diphenyl-3-(2',2'-dimethylpropyl)-2-silabicyclo[2.2.2]oct-5-

^{*} X. Mitteilung siehe Lit. 34.

^{**} Sonderdruckanforderungen.

en] (19) kristallin an. Die Ergebnisse der Röntgenbeugungsanalysen von 19 und E-6 werden in dieser Arbeit vorgestellt.

Einleitung

Neopentylsilaethene. $R^{1,2}Si=CHCH_2^{t}Bu$, lassen sich *in situ* auf einfache Weise durch Umsetzung der entsprechenden Vinylchlorsilane $R^{1,2}Si(CI)CH=CH_2$ mit Li^tBu gewinnen [1–16]. In Abwesenheit weiterer Reaktionspartner unterliegen sie üblicherweise der [2 + 2]-Cyclodimerisierung unter Bildung von 2.4-Dineopentyl-1,3-disilacyclobutanen $R^{1}R^{2}SiCH(CH_2^{t}Bu)SiR^{1}R^{2}CHCH_2^{t}Bu$. In Gegenwart von Dienen reagieren die Si=C-Verbindungen zu Cycloadditionsprodukten. Dabei unterscheidet sich das Additionsverhalten des Dichlorneopentylsilaethens [11,14] deutlich von dem diorganosubstituierter Derivate $R^{1}R^{2}Si=CHCH_2^{t}Bu$ ($R^{1,2} = Me$ [1,2,4], $R^{1,2} = {}^{1}Bu$ [10], $R^{1} = Me$, $R^{2} = Ph$ [5]); dies wird im wesentlichen auf elektronische Gründe zurückgeführt [17] und zeigt, daß dem Substitutionsmuster am Si-Atom für die Verwendbarkeit der Neopentylsilaethene in der Si-organischen Synthese eine besondere Bedeutung zukommt. Unter diesen Gesichtspunkten war für uns das Cycloadditionsverhalten des Diphenylneopentylsilaethens (3) von Interesse.

Erzeugung von $Ph_2Si=CHCH_2^{t}Bu$ (3)

Zur Erzeugung von **3** wird Diphenylvinylchlorsilan (1) in n-Pentan bei -78° C mit äquimolarer Menge Li¹Bu umgesetzt. Über die Stufe eines α -Lithioadduktes **2** bildet sich zwischen -20 und 0° C das Silaethen unter 1.2-LiCl-Eliminierung (Gl. 1):

$$Ph_{2}Si \underbrace{\subset}_{Cl} + Li^{t}Bu \longrightarrow Ph_{2}Si(Cl)CH(Li)CH_{2}^{t}Bu \xrightarrow{\rightarrow}_{LiCl}$$
(1)
(2)
$$Ph_{2}Si = CHCH_{2}^{t}Bu$$
(3)

(1)

Dieser Reaktionsweg läßt sich wie folgt experimentell absichern:

(a) Setzt man der Reaktionsmischung aus Vinylchlorsilan 1 und Li^tBu bei - 78°C Methanol zu, erfolgt quantitative Bildung von Diphenylvinylmethoxysilan
(4). Offensichtlich bildet sich unter diesen Bedingungen aus MeOH und Li^tBu bevorzugt das Methoxyderivat, das mit 1 unter Substitution reagiert (GL 2):

$$\text{Li}^{\text{t}}\text{Bu} + \text{MeOH} \xrightarrow{-^{\text{t}}\text{BuH}} \text{LiOMe} \xrightarrow{1} \text{Ph}_{2}\text{Si}(\text{OMe})\text{CH} = \text{CH}_{2}$$
(2)
(4)

(b) Rührt man dagegen eine Mischung aus $1/Li^{6}Bu$ ca. 3 h in n-Pentan bei -78° C und setzt der Lösung dann Trimethylsilyltriflat (Me₃SiTf) zu, läßt sich 2 unter Bildung des Substitutionsproduktes 5 abfangen. Diese Verbindung entsteht in der Umsetzung gemäß Gl. 3 nach GC/MS-Untersuchungen an der Reaktionslösung zu ca. 70% (neben 10% 1,3-Disilacyclobutan 6 und 15% nicht

umgesetztem Edukt 1), doch leider zersetzt sie sich beim Versuch der destillativen Aufarbeitung. Dagegen läßt sich $Cl_3SiCH(SiMe_3)CH_2^{t}Bu$ aus der Umsetzung von $Cl_3SiCH(Li)CH_2^{t}Bu$ mit Me_3SiTf quantitativ isolieren [18].

$$1 + \text{Li}^{\text{t}}\text{Bu} \longrightarrow 2 \xrightarrow[-\text{LiTf}]{\text{Me}_3\text{Si}(\text{Cl})\text{CH}(\text{SiMe}_3)\text{CH}_2^{\text{t}}\text{Bu}}$$
(3)
(5)

In Abwesenheit polarer Reaktionspartner cyclodimerisiert **3** unter Bildung des E/Z-isomeren 1,1,3,3-Tetraphenyl-2,4-dineopentyl-1,3-disilacyclobutans **6** (Gl. 4) [16]; daneben fallen nicht näher charakterisierte kettenförmige Reaktionsprodukte aus der Kopplung lithiierter Spezies (z.B. **2**) mit weiterem Chlorsilan (z.B. **1**) an.

$$3+3 \longrightarrow \frac{1}{2} Ph_2 Si SiPh_2 + \frac{1}{2} Ph_2 Si SiPh_2$$

$$(4)$$

$$(E-6) \qquad (Z-6)$$

Gaschromatographische und NMR-spektroskopische Untersuchungen belegen ein E/Z-Isomerenverhältnis von 86/14; dies ist zwar deutlich unterschiedlich zu dem des analogen Tetramethylderivates (47/53) [1,2], doch bei Zugabe von Li^tBu zu 2 in siedendem Toluol verschiebt sich dieses auf einen annähernd vergleichbaren Wert von 50/50. Aus dem hochviskosen, teilkristallinen Reaktionsprodukt läßt sich reines E-6 durch zweimaliges Umkristallisieren aus n-Pentan kristallin gewinnen und röntgenographisch charakterisieren.

Molekülstruktur von 2,4-Dineopentyl-1,1,3,3-tetraphenyl-1,3-disilacyclobutan (E-6)

In Fig. 1 ist die Molekülstruktur von *E*-6 im Kristall, in Fig. 2 das Stereobild der Elementarzelle abgebildet. Wichtige Bindungsabstände und Winkel sind in Tab. 1

Tabelle 1

Si-C1	189.7(1)	C1-Si-C1'	92.3(1)	
Si-C1'	190.0(1)	C1-Si-C11	114.8(1)	
Si-C11	186.7(1)	C1-Si-C21	114.3(1)	
Si-C21	187.2(1)	C1'-Si-C11	112.8(1)	
C1-C2	153.2(2)	C1'-Si-C21	112.2(1)	
C2-C3	152.1(2)	C11-Si-C21	109.6(1)	
C3-C4	153.7(2)	Si-C1-Si'	87.8(1)	
C3-C5	151.6(2)	Si-C1-C2	124.7(1)	
C3-C6	151.0(3)	Si'-C1-C2	118.9(1)	
		C1-C2-C3	119.4(1)	
$C1 \cdots C1'$	274	C2-C3-C4	109.6(1)	
Si · · · Si'	263	C2-C3-C5	108.3(2)	
		C2-C3-C6	112.8(2)	

Ausgewählte Bindungsabstände (pm) und Winkel (°) (in Klammern die Standardabweichung in Einheiten der letzten Dezimale)

Fig. 1. Molekülstruktur von E-6 im Kristall (SCHAKAL, ohne Wasserstoffatome, C-Symmetrie).

Fig. 2. Stereodarstellung der Elementarzelle von E-6 (ORTEP, ohne Wasserstoffatome). Die Ellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit.

Atom	x	у	z	$B_{eq}^{a,b}$
Si	0.40425(6)	0.51989(6)	0.07563(6)	3.72(1)
C1	0.6032(2)	0.5055(2)	0.1120(2)	3.83(5)
C2	0.7560(2)	0.6307(2)	0.2166(2)	5.33(6)
C3	0.7820(2)	0.6245(2)	0.3635(2)	5.08(6)
C4	0.6505(3)	0.6505(4)	0.4240(3)	9.4(1)
C5	0.9436(3)	0.7574(3)	0.4430(3)	9.3(1)
C6	0.7769(4)	0.4686(3)	0.3787(3)	11.4(1)
C11	0.2324(2)	0.3585(2)	0.1078(2)	3.91(5)
C12	0.0758(2)	0.3453(2)	0.0707(2)	5.86(6)
C13	-0.0549(2)	0.2262(3)	0.0898(3)	6.57(7)
C14	-0.0343(3)	0.1163(3)	0.1484(2)	5.92(7)
C15	0.1161(3)	0.1244(2)	0.1847(2)	5.57(6)
C16	0.2472(2)	0.2431(2)	0.1645(2)	4.48(5)
C21	0.4138(2)	0.7158(2)	0.1605(2)	3.93(5)
C22	0.3360(2)	0.7353(2)	0.2631(2)	5.06(6)
C23	0.3566(3)	0.8829(2)	0.3326(2)	5.90(6)
C24	0.4535(3)	1.0152(2)	0.3009(2)	5.95(7)
C25	0.5302(3)	1.0006(2)	0.1997(2)	5.85(7)
C26	0.5101(2)	0.8527(2)	0.1303(2)	4.83(6)
H11	0.586(2)	0.407(2)	0.128(2)	2.9(5)*
H21	0.768(2)	0.744(2)	0.215(2)	4.5(6)*
H22	0.851(2)	0.626(2)	0.188(2)	7.0(7)*
H41	0.668(3)	0.657(3)	0.530(3)	12.5(6)*
H42	0.700(3)	0.773(3)	0.443(3)	wie H41
H43	0.555(3)	0.548(3)	0.378(3)	wie H41
H51	0.963(2)	0.753(2)	0.529(2)	6.4(7)*
H52	0.948(3)	0.859(2)	0.432(3)	9.4(9)*
H53	1.017(3)	0.750(3)	0.396(3)	13(1)*
H61	0.802(2)	0.479(2)	0.468(2)	4.8(6)*
H62	0.892(3)	0.497(3)	0.324(3)	8.2(8)*
H63	0.675(3)	0.393(3)	0.341(3)	12(1)*
H121	0.062(2)	0.420(2)	0.031(2)	3.6(5)*
H131	-0.158(2)	0.223(2)	0.064(2)	5.7(6)*
H141	-0.130(2)	0.032(2)	0.167(2)	3.6(5)*
H151	0.126(2)	0.043(2)	0.215(2)	4.4(6)*
H161	0.350(2)	0.249(2)	0.185(2)	2.1(4)*
H221	0.269(2)	0.639(2)	0.285(2)	2.3(4)*
H231	0.301(2)	0.889(2)	0.407(2)	4.5(6)*
H241	0.480(2)	1.115(2)	0.359(2)	4.4(6)*
H251	0.609(2)	1.098(2)	0.180(2)	4.5(6)*
H261	0.561(2)	0.840(2)	0.053(2)	3.7(5)*

Tabelle 2 Atomkoordinaten und äquivalente isotrope Auslenkungsparameter $(Å^2)$

 $\overline{a} B_{eq}$ ist definiert als $(4/3)[a^2\beta(1,1) + b^2\beta(2,2) + c^2\beta(3,3) + ab(\cos \gamma)\beta(1,2) + ac(\cos \beta)\beta(1,3) + bc(\cos \alpha)\beta(2,3)]$. b^* Nur isotrop verfeinert.

zusammengestellt, die Atomkoordinaten enthält Tab. 2, kristallographische Daten sind (mit denen von 19) in Tab. 3 aufgelistet.

Wie aus den Figuren 1 und 2 und den Strukturparametern ersichtlich ist, zeigt die Molekülstruktur von *E*-6 ein Inversionszentrum, d.h. der Disilacyclobutanvierring ist planar. Diese Planarität ist röntgenstrukturanalytisch bei tiefen Temperaturen auch in den 1,3-Disilacyclobutanen $R_2SiCH_2SiR_2CH_2$ (R = H, F, Cl [19])

Tabelle	3

Kristallographische Daten und Meßparameter für 19 und E-6

	19	E-6
Summenformel	C ₁₄ H ₃₀ Si	C 30 H 24 Si ~
M. a.m.u.	346.6	532.9
Kristallsystem	triklin	triklin
Raumgruppe	<i>P</i> 1: (I.TNr.: 2)	PT: (LTNr.: 2)
Kristallformat, mm	$0.30 \times 0.35 \times 0.40$	$0.38 \times 0.51 \times 0.26$
Farbe und Habitus	farblose Prismen	tarblose Rhomben
Meßtemperatur, K	296	396
a, pm	1019,8(5)	931.1(1)
b, pm	1032.3(4)	954.9(1)
c, pm	1048.7(6)	1035.6(1)
α , "	85.72(3)	100.92(1)
β . *	67.56(4)	98,70(1)
γ, «	84.10(3)	112,86(1)
$V. \text{ pm}^3 \times 10^6$	1014	807
Z	2	The second se
$d_{\rm calc.}$, g cm ⁻³	1.135	1.097
Strahlenquelle	$Mo-K_{\alpha}$	$Cu-K_{\alpha}$
μ , cm ⁻¹	1.1	11.3
Scantyp	ω-scan	$\theta \neq 2\theta$ -scan
Meßzeit, s	max. 90	max. 60
Scanbreite, *	$(1.00 \pm 0.30 \tan \theta)$	$(1.00 \pm 0.25 \tan \theta)$
$\theta_{\rm max}$, 2: Oktanten	25: $+h, \pm k, \pm l$	$65; \pm h, \pm k, \pm l$
Untergrund	$\pm 25\%$ vor und nach jede	em Reflex
Korrekturen	LP	LP: Absorption:
		Extinktion
Gemessene Reflexe	3761	2917
unbeobachtete Reflexe: $I < 0.01$	236	183
unabhängige Reflexe	3324	2566
R _(merge)	0.011	0.021
zur Rechnung benutzt (NO)	3324	2566
Parameter (NV)	322	<u>250</u>
Reflexe/Parameter	10.3	Q_0
R^{-a}	0.065	0.050
R _w	0.066	0.043
GOF: p	7.402; 0.00	3 282: 0.00
Gewichtungsschema; w	$1/\sigma^2(F_{\rm o})$	$1/ar^2(F_{\phi})$
shift/err	< 0.001	< 0.(0)1
max.: min., e_{o} Å ⁻³	+0.44; -0.31	+0.20; -0.22

 $\frac{d^{2}R = \sum ||F_{0}| - |F_{c}|| / \sum |F_{0}|, R_{w} = \sum (\sum w(|F_{0}| - |F_{c}|)^{2} / \sum w |F_{0}|^{2}|^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; OF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{2} / (NO(|F_{0}| - |F_{c}|)^{2})^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^{1/2}; GOF = \sum w(|F_{0}| - |F_{c}|)^$

nachweisbar und wird im Kristall—wie auch an anderen 2,4-Dineopentyl-1,3-disilacyclobutanen bei Raumtemperatur—immer dann beobachtet, wenn die Si-Atome gleiche oder vergleichbar große Reste R und R' tragen (RR'SiCH (CH₂'Bu)SiRR'CHCH₂'Bu: R = R' = Me; R = R' = 'Bu oder Cl; R, R' = Me, R, R' = Cl [20]). Dabei beeinflußt der sterische Anspruch der Si-Substituenten sowie die β -C-ständige 'Bu-Gruppe die Ringgeometrie offensichtlich nicht. Wird dagegen die Größe der beiden Si-ständigen Substituenten deutlich unterschiedlich wie z.B. im Z/Z-1,3-Bis(cyclopentadienyl-dicarbonyleisen)-1,3-dimethyl-2,4-di-

neopentyl-1,3-disilacyclobutan, resultiert eine Faltung des SiC-Vierringes (18.7°), die im Kristall nachgewiesen wird [12]. Diese tritt auch bei unterschiedlicher α -C-Substitution im Ringgerüst wie z.B. im *cis*-2,4-Dichlor-2,4-bis(trimethylsily)-1,1,3,3-tetramethyl-1,3-disilacyclobutan (17.8°) auf [21]. Dagegen zeigen Elektronenbeugungsuntersuchungen an 1,3-Disilacyclobutanen R_2 SiCH₂SiR₂CH₂ (R = Cl [22], R = H [23]) in Übereinstimmung mit ab initio Berechnungen [23], daß das SiC-Vierringgerüst in beiden Verbindungen in der Gasphase gewinkelt vorliegt $(R = Cl: 14(3), R = H: 25(2)^\circ)$. Die endocyclischen Winkel Si-C-Si und C-Si-C in E-6 betragen 87.75(5) bzw. 92.25(5)°; da derjenige an den Si-Atomen größer ist als der an den C-Atomen resultiert-wie bei anderen 1,3-Disilacyclobutanen [12,20,21,24]—ein relativ kurzer transannularer Si-Si-Abstand (2.63(6) Å; zum Vergleich: $C \cdots C$ 2.75(4) Å). Dieser ist vergleichbar mit dem des Grundkörpers dieser Verbindungsklasse (H₂SiCH₂SiH₂CH₂: 2.62 Å [19]) und liegt bereits in der Größenordnung von Si-Si-Bindungslängen in sterisch überladenen Di- und Trisilanen [25]. Diese im Kristall gefundenen strukturellen Auffälligkeiten werden für $R_2SiCH_2SiR_2CH_2$ (R = Cl [22]; R = H [23]) auch in der Gasphase nachgewiesen. Nach quantenmechanischen Berechnungen am 1,3-Disilacyclobutan [19] liegen zwischen den beiden Si-Atomen jedoch keine bindenden Wechselwirkungen vor. Die mittlere endocyclische Si-C-Bindungslänge in E-6 ist mit 1.90(1) Å um 0.03 Å geringfügig länger als die mittleren exocyclischen Si-C-Bindungen Si-C11 bzw. Si-C21 mit 1.87(1) Å; die Interplanarwinkel der Phenylsubstituenten an den Si-Atomen betragen 66.7°.

Cycloadditionsreaktionen des Ph₂Si=CHCH₂^tBu (3)

Unsere Bemühungen, Silaethen 3 NMR- oder UV-spektroskopisch bei tiefen Temperaturen (-78° C) nachzuweisen, waren bisher erfolglos. Deshalb versuchten wir es in einer Reihe von Cycloadditionen mit organischen Dienen abzufangen. Darüberhinaus erschien uns—wie einleitend beschrieben—ein Vergleich des Additionsverhaltens von 3 mit seinem dichlorierten Analogon durchaus reizvoll.

Reaktionen von 3 mit 2,3-Dimethyl (DMB)- und 2-Methyl-1,3-butadien (MBD)

Zu einer äquimolaren Menge Vinylchlorsilan $1/Li^{1}Bu$ wird bei $-78^{\circ}C$ ein dreifacher Überschuß DMB gegeben. Während langsamer Erwärmung auf Raumtemperatur kommt cs zur Ausfällung von LiCl und Orangefärbung der Lösung. Als Reaktionsprodukt (GC-Integration der Produktmischung: 80% Ausbeute) läßt sich das [4 + 2]-Cycloaddukt 7 als hochviskose, farblose Flüssigkeit in 25% Ausbeute (bezogen auf 1) isolieren (Gl. 5) und der analytischen und spektroskopischen Charakterisierung zuführen. Dabei fällt auf, daß 7 durch eine zweite isomere Verbindung zu 18% verunreinigt ist, bei der es sich um das offenkettige En-Produkt 8 handelt. Eine Auftrennung von 7 und 8 blieb leider erfolglos, so daß diese Verbindungen nur im Gemisch auf der Grundlage spektroskopischer Vergleichsdaten [5] identifiziert werden konnten.

Als Nebenprodukte fallen bei der Reaktion nach Gl. 5 hochpolymere Substanzen aus der Kopplung Li-organischer Verbindungen mit Chlorsilan 1 an, die ausschließlich GC/MS-analytisch charakterisiert wurden. Auf eine Auflistung dieser Untersuchungsergebnisse wird aus Übersichtsgründen verzichtet.

Der Reaktionsverlauf nach Gl. 5 steht in weitgehender Übereinstimmung zur Reaktion des Me₃Si=CHCH $_3$ ^tBu mit DMB [4], die selektiv zum [4 + 2]-Cycloaddukt führt, während MePhSi=CHCH3'Bu in Konkurrenz dazu auch das En-Produkt bildet [5]. Eine mit 3 vergleichbare Reaktivität zeigt auch 'Bu-Si=CHCH, 'Buwahlweise erzeugt aus 'BusSi(F)CH=CH2/Li'Bu/DMB bei - 78°C oder bei Raumtemperatur: dieses reagiert mit DMB in ca. 70% Ausbeute zu 1.1-Di-t-butyl-3,4-dimethyl-6-neopentylsilacyclohex-3-en (9) [10]. Außerdem lassen sich zwei weitere isomere Derivate GC/MS-analytisch nachweisen, das [2-2]- oder En-Produkt (10) und ^tBu₂Si(CH=CH₂)CH₃CMe=CMeCH₂^tBu (11) als Folgeprodukt einer Substitution von SiF durch LiCH CMe=CMeCH Bu. Auf die Präsenz der 1,4-Liorganischen Verbindung in diesem Reaktionsgemisch weisen auch geringe Mengen an Kopplungsprodukten hin, denen aufgrund der massenspektroskopischen Fragmentierungen die Formeln 'Bu,Si(CH,CMe=CMeCH,'Bu)CH=CH'Bu (12) und ¹Bu₂Si(CH₂CMe=CMeCH₂¹Bu)CH₂CH₂¹Bu (13) zugeordnet werden können. Über die Bildungsmöglichkeiten der *trans*-Ethen- und der silvl/butylsubstituierten Ethanderivate wurde bereits früher bei der Beschreibung der Reaktionen von H₅C=CHSiCl₃ mit Li¹Bu berichtet [8]. Der Anteil der Verbindungen 10-13 am Produktgemisch beträgt etwa 20%.

Die Cycloadditionsreaktionen von 3 mit MBD verlaufen unter vergleichbaren Bedingungen ähnlich zu denen mit DMB. Aus einer Lösung des hochviskosen, orangen Reaktionsrückstandes in n-Pentan läßt sich durch Destillation im HV eine farblose Fraktion isolieren, die sich nach GC/MS- und NMR-spektroskopischen Untersuchungen aus fünf destillativ nicht trennbaren isomeren Verbindungen im Verhältnis 9.5/3.2/22.3/28.6/36.4 zusammensetzt. Dabei kommen den regioisomeren [4 + 2]-Produkten 14 mit 65% die Hauptanteile zu, bei den restlichen drei Isomeren handelt es sich um [2 + 2]-Addukte 15 und das En-Derivat (16), angezeigt durch die charakteristischen endständigen H3C=CH-Gruppierungen in den 1Hund ¹³C-NMR-Spektren. Auf der Basis der spektroskopischen Daten kann leider nicht entschieden werden, ob bei der Cycloaddition nach Gl. 6 stereo- und/oder regioisomere [2+2]-Produkte entstanden sind; jedoch zeigt ein Spektren- und Retentionszeitenvergleich mit dem cis/trans-Stereoisomerenpaar 1.1-Diphenvl-2neopentyl-3-ethenyl-3-methylsilacyclobutan, das aus der vollständig charakterisierten dichlorierten Vorstufe mit Phenylgrignardreagenz zugänglich wird [18], daß es sich bei 15 um Stereoisomere handelt: demnach ist die [2 + 2]-Addition regioselektiv verlaufen.

Interessant ist in diesem Zusammenhang, daß die Erzeugung von 3 und die Cycloaddition nach Gl. 6 mit der Substitutionsreaktion von Ph₂Si(Cl)CH(Li)-

9

 CH_2 ^tBu (2) unter Bildung von 5 nach Gl. 3 nahezu gleichberechtigt abläuft: Setzt man der Mischung aus $1/Li^tBu/MBD$ bei $-78^{\circ}C$ überschüssiges Me_3SiTf zu, bildet sich 5 zu 25%, die Cycloaddukte 14 und 15 sowie 16 liegen in ca. 20%, Disilacyclobutan E/Z-6 in 30% Anteil vor, während 12% des Eduktes 1 unumgesetzt bleiben.

Cycloadditionsreaktionen des Ph₂Si=CHCH₂[']Bu (3) mit Norbornadien (NBD)

NBD ist das klassische, nicht konjugierte Dien, das mit geeigneten Dienophilen wie z.B. Acryl- oder Methacrylderivaten über eine homo-Diels-Alder-Reaktion $(\pi 2s + \pi 2s + \pi 2s$ -Cycloaddition) zu δ -Cyclanderivaten führt [26]. Dagegen bilden sich in der Umsetzung mit Chlorcyanoacetylen die [2 + 2]-Produkte über ionische Zwischenstufen in Konkurrenz zu den [2 + 2 + 2]-Verbindungen [27]. Dies zeigt, daß die Bildung und Art eines Cycloadduktes mit NBD als empfindliche Sonde zur Beschreibung der Polarität des eingesetzten Dienophils zu werten ist.

Läßt man eine Mischung aus äquimolaren Mengen 1/Li^tBu mit einem dreifachen Überschuß NBD von -78° C auf Raumtemperatur erwärmen, bildet sich eine gelbe Lösung unter LiCl-Eliminierung. Aus dieser läßt sich nach Trennung vom Li-Salz und erneuter Abkühlung auf -78° C das 1,3-Disilacyclobutan E/Z-6 als Nebenprodukt der Reaktion auskristallisieren. Durch destillative Aufarbeitung wird in etwa 6% Ausbeute (bezogen auf 1) eine farblose, hochviskose Fraktion bei ca. $200^{\circ}C/10^{-2}$ mbar isoliert, die sich nach NMR und GC/MSanalytischen Untersuchungen aus drei Verbindungen im Isomerenverhältnis 17/69/14 zusammensetzt. Dabei kommt dem *endo/exo*-isomeren [2 + 2 + 2]-Produkt 17 mit 56% der größere Anteil zu, während es sich bei dem dritten Isomer um die offenkettige Verbindung 18 handelt (Gl. 7). Diese ist kein stabiles Folgeprodukt einer primär erfolgenden [2 + 2]-Cycloaddition von 3 an NBD, da sich solche Silacyclobutanderivate 18b nach vergleichenden Untersuchungen als thermisch stabil erweisen [18]. Dagegen wird die Bildung von 18 durch den Ablauf einer En-Reaktion verständlich, in der 3 als En mit NBD als Enophil mehrstufig über 18a reagiert. Vergleichbare Reaktionsabläufe werden besonders für das stark elektrophile Dichlorneopentylsilaethen diskutiert [18]. In Übereinstimmung zum Cycloadditionsverhalten des Me₂Si=CHCH₂¹Bu [18] wird die Entstehung von [2 + 2]-Addukten nicht beobachtet; so überrascht es auch nicht, daß 3 mit Quadricyclan keine [2 + 2 + 2]-Addukte bildet. In diesem Fall wird E/Z-6 (53/47) als alleiniges Reaktionsprodukt in n-Pentan als Lösungsmittel nachgewiesen.

Die Verbindungen 17 und 18 lassen sich anhand eines Spektrenvergleichs mit entsprechenden Derivaten des Dichlorneopentylsilaethens und besonders mit dessen diphenylsubstituierten Cycloaddukten zweifelsfrei identifizieren [18]: dabei ist für 17 die charakteristische Hochfeldlage der ¹³C-NMR-Resonanzen des Cyclopropanrestes, für 18 die ¹³C-Tieffeldlage der $-CH=CH^{+}Bu$ -Gruppe strukturbeweisend.

Es fällt auf, daß die Cycloadditionsverbindungen in der Reaktion nach Gl. 7 insgesamt nur in schlechter Ausbeute zugänglich werden. Als Destillationsrückstände verbleiben hochpolymere Verbindungen, deren Entstehung vermutlich auf Kopplungsreaktionen von Ph₂Si(Cl)CH(Li)CH₂¹Bu (2) mit weiterem Chlorsilan 1 zurückzuführen ist. Die Produkte werden nicht näher charakterisiert und belegen die vergleichsweise hohe Stabilität des a-Lithioadduktes 2; daß diese Polymerenbildung nicht durch die hohen Destillationstemperaturen und die thermische Zersetzung bereits gebildeter Cycloaddukte herbeigeführt wird, zeigt das ²⁹Si-NMR-Spektrum der Produktmischung vor der Aufarbeitung, in dem mehr als 20 (!) Resonanzsignale registriert werden.

Cycloadditionsreaktionen von 3 mit Cyclohexa-1,3-dien

Cyclohexadien hat sich nach Literaturbefunden besonders als [4 + 2]-Fängerreagenz für Heterodienophile wie P=C- [29], N=O- [30], C=O- [31] und C=S-Bindungssysteme [32] bewährt; lediglich ⁴Bu₂Si=Si⁴Bu₂ wird als [2 + 2]-Addukt abgefangen [33]. Deshalb überrascht es nicht, daß die Reaktion zwischen **3** und diesem Dien in glatter Reaktion ausschließlich zu den *endo/exo*-isomeren Diels-Alder-Addukten **19** im isomeren Verhältnis von 30/70 und einer Ausbeute von insgesamt 15% führt (Gl. 8). Daneben bildet sich noch Disilacyclobutan E/Z-**6**.

Bei der Destillation der Produktmischung sublimiert **19** als Stereoisomerenpaar; ein geeigneter Einkristall ist strukturanalytisch untersucht worden. Darüberhinaus wurden die Cycloaddukte *endo/exo-***19** NMR-spektroskopisch identifiziert; dabei erfolgte die Zuordnung der ⁴H- und ¹³C-Resonanzsignale in Anlehnung an 2Dshift-korrelierte (H,H und C,H-COSY) NMR-Untersuchungen am [4 + 2]-Isomerenpaar des Dichlorneopentylsilaethens mit dem gleichen Dien [28,34].

- Es überrascht nicht, daß bei der Reaktion nach Gl. 8.

- (a) ausschließlich die Sechsringbievelen gebildet werden. Wie vergleichende Kraftfeldberechnungen zur "sterischen Stabilität" der Diels-Alder und isomeren [2 + 2]-Addukte zeigen, verfügen die [4 + 2]-Derivate gegenüber den Silacyclobutanen über eine deutlich höhere Stabilität [35]:
- (b) das thermodynamisch ungünstige exo-19 (d.h. exo-Stellung der Neopentyl-Gruppe zur C₂H₂-Brücke im bicyclischen System) bevorzugt gebildet wird. Wie die Strukturuntersuchungen an 19 und an 3-(2',2'-Dimethylpropyl)-2-sila-[5,6]benzobicyclo[2.2.2]-octa-5.7-dien [34] belegen, hat die bevorzugte endo-Stellung der CH₃'Bu-Gruppe in letzterem offensichtlich sterische Gründe:

Fig. 3. Molekülstruktur von 19 im Kristall (schakal, ohne Wasserstoffatome).

derart werden räumliche Wechselwirkungen der C_2H_4 -Brücke mit dem Neopentylrest, die zu einer zusätzlichen Verzerrung des Ringgerüstes führen würden, weitgehend abgeschwächt.

Molekülstruktur von {endo / exo-[2,2-Diphenyl-3-(2',2'-dimethylpropyl)-2silabicyclo[2.2.2]oct-5-en} (19). In Fig. 3 ist die Molekülstruktur von endo /exo-19

Fig. 4. Stereodarstellung der Elementarzelle von 19 (ORTEP, ohne Wasserstoffatome). Die Ellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit.

189.0(1) 187.8(1) 187.6(1) 150.7(2) 152.2(1) 156.7(1) 153.2(2) 153.2(3)	C1 - Si - C21 C1 - Si - C31 C3- Si - C21 C3- Si - C31 C21 - Si - C31 Si - C1 - C6 Si - C1 - C7	$\begin{array}{c} 111.9(1) \\ 109.3(1) \\ 114.4(1) \\ 113.4(1) \\ 108.1(1) \\ 106.0(1) \\ 106.0(1) \end{array}$	
187.8(1) 187.6(1) 150.7(2) 152.2(1) 156.7(1) 153.2(2) 153.2(3)	C1S1C31 C3- S1C21 C3-S1C31 C21-S1C31 S1C1C6 S1C1C7	$109.3(1) \\114.4(1) \\113.4(1) \\108.1(1) \\106.0(1) \\106.$	
187.6(1) 150.7(2) 152.2(1) 156.7(1) 153.2(2) 153.2(3)	C3~ Si~C21 C3~Si~C31 C21~Si~C31 Si~C1~C6 Si~C1~C7	$ \begin{array}{c} (14.4(1))\\ (13.4(1))\\ (08.1(1))\\ (06.0(1))\\ (06.2(1)) \end{array} $	
150.7(2) 152.2(1) 156.7(1) 153.2(2) 151.2(3)	C3-Si+C31 C21+Si+C31 Si+C1+C6 Si+C1+C7	113.4(1) 108.1(1) 106.0(1)	
152.2(1) 156.7(1) 153.2(2) 151.2(3)	C21-Si-C31 Si-C1-C6 Si-C1-C7	108.1(1) 106.0(1)	
156.7(1) 153.2(2) 151.2(3)	Si-C1 - C6 Si-C1 - C7](06)(0(1))	
153.2(2)	Si=C1 -C7	1.15 37.13	
151 2(3)		1710777713	
A set A second set A	C6C1-C7	108.0(3)	
154.0(2)	SF C3 C4	Edites, New Edit	
140.1(2)	Si-C3-C9	生白味 铁金属	
143.3(2)	C4C3C9	11日本,11日年月	
154.8(2)	C3C4C5	(OS.764.)	
154.5(2)	C3-C4-C8	11.4(1)	
153.6(2)	C5-C4-C8	108.8(1)	
152.3(2)	C4C5C6	114.781×1	
	C1C6C5	114.8(1)	
	$C1 \sim C7 \sim C8$	113.1(1)	
	C4 · C8 · C7	1 1 4 4 4 1 1	
	C3-C9-C10	117.5010	
	C9C10C11	106.5(1)	
	C9C10C12	111 9611	
	C9 -C10-C13		
	154.0(2) 140.1(2) 143.3(2) 154.8(2) 154.5(2) 153.6(2) 152.3(2)	$\begin{array}{rcl} 154.0(2) & \text{Si} \text{C3} \text{C4} \\ 140.1(2) & \text{Si} \text{C3} \text{C9} \\ 143.8(2) & \text{C4} \text{C3} \text{C9} \\ 154.8(2) & \text{C3} \text{C4} \text{C5} \\ 154.5(2) & \text{C3} \text{C4} \text{C5} \\ 153.6(2) & \text{C5} \text{C4} \text{C8} \\ 152.3(2) & \text{C4} \text{C5} \text{C6} \\ & \text{C4} \text{C7} \text{C8} \\ & \text{C4} \text{C7} \text{C8} \\ & \text{C4} \text{C7} \text{C7} \\ & \text{C3} \text{C9} \text{C10} \\ & \text{C9} \text{C10} \text{C14} \\ & \text{C9} \text{C10} \text{C12} \\ & \text{C9} \text{C10} \text{C12} \\ & \text{C9} \text{C10} \text{C13} \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Ausgewählte Bindungsabstände (pm) und Winkel (⁺) (in Klammern die Standardabweichung in Einheiten der letzten Dezimale)

im Kristall, in Fig. 4 das Stereobild der Elementarzelle abgebildet. Wichtige Bindungsabstände und -winkel enthält Tab. 4, die Atomkoordinaten sind in Tab. 5 zusammengestellt. Die kristallographischen Daten sind (mit denen von E-6) in Tab. 3 aufgelistet.

Die Röntgenbeugungsanalyse bestätigt das Vorliegen der Diels-Alder-Addukte von Silaethen 3 mit Cyclohexa-1,3-dien. Eine Fehlordnung der C-C-Brücken des Bicyclo[2.2.2]octen-Gerüstes belegt das gleichzeitige Vorliegen sowohl des endoals auch des exo-Isomeren. In Übereinstimmung mit GC- und NMR-spektroskopischen Untersuchungen bestätigt die Differenz der Bindungslängen C(5)-C(6) (1.403 Å) und C(7)-C(8) (1.433 Å) den größeren Anteil des exo-Isomeren (endo/exo ~ 30/70). Dieser Befund steht nicht im Einklang mit den Isomerenanteilen der [4 + 2]-Cycloaddukte zwischen CL-Si=CHCH ⁴Bu und dem gleichen Dien [28]. Der Winkel C(1)-Si-C(3) beträgt 99.45° und ist damit geringfügig (0.84°) kleiner als der entsprechende Winkel im 2-Sila-[5,6]benzobicyelo[2.2.2]octa-5,7-dien [34]; er ist um 6.6° größer als der Winkel C(1)-Si-C(3) in E-6 und um 8.7° kleiner als der Außenwinkel C(21)-Si-C(31), der mit 108.13° nahezu ideal tetraedrisch ist. Erwartungsgemäß sind die endocvelischen Si-C-Bindungen leicht gedehnt; der Abstand C(3)-C(4) ist-ebenso wie beim 2-Silabicyclo[2,2,2]octadien [34]-mit 1.57(1) Å deutlich länger als der Durchschnittswert der übrigen C-C-Einfachbindungen (1.52(1) Å). In Analogie zu E-6 sind die beiden Phenylsubstituenten am Si-Atom nahezu senkrecht zueinander angeordnet.

Tabelle 4

Tabelle 5 Atomkoordinaten und äquivalente isotrope Auslenkungsparameter ($Å^2$)

Atom	x	у	Z	B _{eq} ^{<i>a,b</i>}
Si	0.24378(7)	0.38674(7)	0.16353(7)	3.62(2)
C1	0.3912(3)	0.3703(3)	0.2338(3)	4.55(7)
C3	0.1031(3)	0.3002(3)	0.3090(3)	4.35(6)
C4	0.1732(3)	0.2488(3)	0.4146(3)	5.19(7)
C5	0.2121(3)	0.3643(3)	0.4697(3)	6.33(8)
C6	0.3272(3)	0.4275(3)	0.3747(3)	5.46(7)
C7	0.4268(3)	0.2247(3)	0.2502(3)	5.63(7)
C8	0.3091(3)	0.1590(3)	0.3458(3)	5.93(8)
C9	0.0229(3)	0.1991(3)	0.2745(3)	5.15(7)
C10	-0.1395(3)	0.2002(3)	0.3572(3)	4.46(7)
C11	- 0.1891(3)	0.0799(3)	0.3143(3)	6.50(9)
C12	-0.1758(3)	0.1896(3)	0.5136(3)	6.42(9)
C13	-0.2180(3)	0.3211(3)	0.3192(4)	7.2(1)
C21	0.3014(2)	0.3102(2)	-0.0084(2)	3.74(6)
C22	0.3233(2)	0.3852(2)	-0.1291(3)	4.10(6)
C23	0.3706(3)	0.3314(3)	-0.2568(3)	5.45(8)
C24	0.3974(3)	0.1988(3)	-0.2680(3)	6.02(8)
C25	0.3762(3)	0.1213(3)	-0.1510(3)	6.07(8)
C26	0.3280(3)	0.1743(3)	- ().0229(3)	4.93(7)
C31	0.1914(2)	0.5640(2)	0.1409(2)	3.67(6)
C32	0.2832(3)	0.6582(3)	0.1269(3)	4.62(7)
C33	0.2471(3)	0.7906(3)	0.1076(3)	5.49(8)
C34	0.1163(3)	0.8285(3)	0.1040(3)	5.57(8)
C35	0.0234(3)	0.7387(3)	0.1167(3)	5.76(8)
C36	0.0592(3)	0.6072(3)	0.1349(3)	4.99(7)
H11	0.478(2)	0.410(2)	0.173(2)	2.0(5)*
H31	-0.001(2)	0.347(2)	0.362(2)	3.1(6)*
H41	0.105(2)	0.204(2)	0.489(2)	2.4(6)*
H51	0.162	0.392	0.561	8 ^c
H52	0.235	0.335	0.547	wie H51
H53	0.131	0.426	0.498	wie H51
H61	0.362	0.501	0.397	7 ^c
H62	0.295	0.516	0.364	wie H61
H63	0.399	0.424	0.411	wie H61
H71	0.518	0.182	0.202	wie H61
H72	0.503	0.213	0.282	wie H61
H73	0.456	0.187	0.163	wie H61
H81	0.314	0.068	0.365	wie H51
H82	0.287	0.095	0.298	wie H51
H83	0.337	0.117	0.416	wie H51
H91	0.041(3)	0.207(3)	0.165(3)	4.6(7)*
H92	0.074(3)	0.102(3)	0.291(4)	8(1)*
HIII	-0.133(3)	0.002(3)	0.349(3)	6.4(9)*
H112	-0.143(3)	0.098(3)	0.197(3)	6.4(9)*
H113	-0.299(4)	0.083(3)	0.371(4)	9(1)*
H121	- 0.141(2)	0.269(2)	0.544(2)	3.6(7)*
H122	-0.282(3)	0.188(3)	0.556(3)	6.4(9)*
H123	-0.103(4)	0.088(4)	0.544(4)	10(1)*
H131	-0.321(2)	0.302(2)	0.392(2)	2.8(6)*
H132	-0.164(4)	0.335(4)	0.185(4)	12(1)*
H133	-0.181(3)	0.402(3)	0.337(3)	5.7(8)*

Atom	Ň	<i>b</i> ,	Aug.	B _{eq} ^{ar}	
11221	0.304(2)	().468(2)	- 0.122(2)	1.2(5)*	
11231	0.393(3)	()_389(3)	-(),334(3)	4.1(7)*	
H241	0.435(2)	0.171(2)	- ().361(3)	3.5(<i>i</i> s)*	
H251	0.384(3)	().036(3)	- 0.160(3)	5,4(8)*	
H261	().314(2)	0.119(2)	(1.963(2))	2.2(5)*	
H321	0.368(2)	().629(2)	0.130(2)	2.5(6)*	
H331	0.312(2)	0.851(2)	0.105(2)	2.3(m)*	
H341	0.105(3)	(1.916(3)	0.090(3)	4.1(7)*	
H351	-0.070(3)	(1.763(3))	0.120(3)	4,9(8)*	
H361	-0.010(2)	(1.546(2)	0.152(2+	2.2(5)*	

Tabelle 5 (Fortsetzung)

^{*a*} B_{co} ist definiert als $(4/3)[a^2\beta(1.1) + b^2\beta(2.2) + c^2\beta(3.3) + ab(\cos \gamma)\beta(1.2) + ac(\cos \beta)\beta(1.3) + bc(\cos \alpha)\beta(2.3)]$. ^{*b*} Nur isotrop verfeinert. ⁺ Der Auslenkungsparameter berechnet sich nach $B(H) \approx 1.3B_{so}(C)$.

Cycloadditionsreaktionen von 3 mit Anthracen und Cyclopentadien

Dichlor- [11], Vinyl-chlor- [13] und Dimethylneopentylsilaethen [4] lassen sich mit Anthracen und Cyclopentadien in Form der [4 + 2]-Cycloaddukte abfangen. Die generelle Verwendbarkeit der Kombination Diorganovinylchlorsilan/Li^tBu/Dien zum Aufbau von Sila-Heterocyclen zeigt sich nun auch besonders in der Synthese der beiden [4 + 2]-Verbindungen **20** und **21** [36] nach Gln. 9 und 10, ausgehend von Dienophil 3.

(21)

Zur Darstellung von *exo/endo-20* und 21 werden die Bedingungen den Problemstellungen angepaßt:

(a) Die Mischung aus 1/Li⁺Bu mit dreifachem Überschuß monomerem C₅H₆ wird unter Rühren langsam von -78°C auf Raumtemperatur erwärmt. Dabei kommt es oberhalb - 10°C in Konkurrenz zur LiCl-Eliminierung zur Ausfällung von LiCp, so daß der Mischung dadurch eine beachtliche Menge des Li⁺Bu als Reaktionspartner für 1 entzogen wird. Deshalb lassen sich bei der Aufarbeitung der Produktmischung erwartungsgemäß erhebliche Mengen an Edukt 1 (~40%) zurückgewinnen. In Übereinstimmung mit der GC/MS-analytischen Untersuchung der Reaktionslösung werden aus dem Rückstand neben E/Z-6 (15%, 86/14) und Ph₂SiCpCH=CH₂ (3%) die cxo/endo-isomeren [4 + 2]-Cycloaddukte 20 in etwa 20% Ausbeute isoliert; dabei kristallisiert die

durch Destillation bei $120^{\circ}C/10^{-2}$ mbar erhaltene flüssige Fraktion in der Vorlage teilweise aus. Der kristalline Anteil wird in CDCl₃ gelöst und durch 2D-shift-korrelierte H,H-ROESY Messung als das *exo*-Addukt **20** identifiziert. Leider erwiesen sich im HV sublimierte, sowie aus (Me₃Si)₂O umgefällte Kristalle als verzwillingt, die Kristallisation aus unpolaren Lösungsmitteln führte zu feinkristallinem Material; deshalb konnte *exo*-**20** bisher noch keiner Röntgenstrukturanalyse unterzogen werden. *Endo*-**20** verbleibt dagegen als hochviskose Flüssigkeit. Das *exo/endo*-Verhältnis beträgt 59/41 und steht damit in guter Übereinstimmung mit Literaturergebnissen für die dichlorierten bzw. dimethylierten Derivate (60/40) [11,4].

(b) Wegen der geringen Löslichkeit von Anthracen in n-Pentan wird dieses mit 1 in Toluol vorgelegt und auf 60°C erhitzt. Dazu wird die zu 1 äquimolare Menge Li^tBu getropft. Dabei verfärbt sich die Lösung unter LiCl-Abspaltung kurzzeitig rotbraun, nach 12-stündigem Rühren bei Raumtemperatur bleibt sie orange. Die GC-analytische Untersuchung der Reaktionslösung zeigt eine zunächst überraschende Produktzusammensetzung an: Anthracen ist zu 20%, E/Z-6 zu 18% und 21 zu 12% vorhanden. Zusätzlich erscheint ein sehr intensiver Peak (44%), der sich einer GC/MS-analytischen Charakterisierung leider entzieht. Nach ca. 10 Tagen ist dieser Substanzpeak verschwunden, dafür sind die Anteile an E/Z-6 und 21 deutlich angestiegen. Während dieses Vorganges wird keine LiCl-Eliminierung beobachtet. Da auch NMRspektroskopische Untersuchungen an der Mischung erfolglos blieben, können wir über die Identität dieser Zwischenverbindung keine Aussage machen. Ahnliche Beobachtungen wurden schon bei der Untersuchung des ^tBu₂Si=CHCH₂^tBu gemacht [10], die Identifizierung dieser Spezies bleiben Gegenstand weiterer Arbeiten. Nach Absublimation von überschüssigem Anthracen lassen sich aus der Reaktion nach Gl. 10 E/Z-6 (48%, 65/35) und das Diels-Alder-Produkt 21 in 38% iger Ausbeute im Gemisch kristallin isolieren. Die ¹³C-NMR-spektroskopische Charakterisierung von **21** erfolgte in Anlehnung an die Datensätze ähnlich gebauter Derivate [11,4].

Diskussion der Ergebnisse und ergänzende Untersuchungen zur Reaktivität von Phenylvinylsilanen gegenüber Li^tBu

Diphenylvinylchlorsilan (1) verfügt über drei reaktive Zentren abnehmender Reaktivität gegenüber Li^tBu: die Si-Vinyl-, die Si-Cl- und die Si-Phenylgruppen.

Primärschritt der Reaktion zwischen 1 und Li¹Bu ist die Addition des Liorganischen Reagenzes an die Vinylgruppe unter Bildung von Ph₂Si(Cl)CH(Li)-CH₂¹Bu (2). Die Phenylreste als – I-Substituenten sind in der Lage, das Lithioaddukt durch Verlagerung der Elektronendichte zum Silicium zu stabilisieren; in die Delokalisation der Anionenladung kann der Phenylrest zusätzlich mit einbezogen werden. Als Konsequenz verläuft die 1,2-LiCl-Eliminierung zum Silaethen 3 nur eingeschränkt, angezeigt durch die mäßigen Ausbeuten an Cycloadditionsprodukten beim Abfangen von 3 mit Dienen. Die bevorzugte Reaktionsrichtung ist die Weiterreaktion als Lithiumorganyl durch Kopplung mit weiterem 1 zu polymeren Verbindungen oder die Cyclisierung zu Disilacyclobutan 6 unter intermolekularer LiCl-Abspaltung. Aus den gleichen Gründen führt die Reaktion von $[Cp(CO)_2Fe]PhSi(Cl)CH=CH_2$ mit Li¹Bu nicht zum entsprechenden Neopentylsilaethen sondern zu oligomeren Verbindungen des Typs H₂C=CH(SiPh[Fe(CO)₂ Cp]CHCH₂¹Bu)_n SiPh[Fe(CO)₂Cp]Cl [12]. Als weiterer Beweis für das Auftreten lithiierter Verbindungen bei der Durchführung der Cycloadditionsreaktionen zwischen 1/Li¹Bu und Dienen ist die charakteristische Verfärbung der Reaktionslösungen nach orange bis rotbraun zu werten. Diese Beobachtung wurde bereits bei der Reaktion methyl- und trimethylsilylsubstituierter Vinylsilane mit Li¹Bu gemacht [37].

Zur weiteren Klärung dieser Befunde wurden vergleichende Reaktionen an organosubstituierten Phenylvinylsilanen mit Li¹Bu durchgeführt.

- (a) Aus der Umsetzung von Dimethylphenylvinylsilan mit Li⁴Bu lassen sich aus einem gelb-orangen, öligen, Li-haltigen Reaktionsrückstand neben hochmolekularen Kopplungsverbindungen Me₂Si(Ph)CH₂CH₂⁴Bu (22) und Me₃Si(Ph) CH=CH⁴Bu (23) als Hauptprodukte isolieren; in geringen Mengen werden zusätzlich Ph₂Si(Me)CH=CH⁴Bu neben Ph₂Si(Me)CH₃CH₂⁴Bu GC/MSanalytisch nachgewiesen.
- (b) Mit zunehmender Anzahl von Phenylgruppen am Si erleichtert sich der Einbau von Li⁺Bu: Ph₂Si(Me)CH=CH₂ reagiert mit dem Li-Organyl zu einem intensiv dunkelrot gefärbten Öl. aus dem sich durch Destillation im HV folgende Produkte in einer Reihung abnehmender Anteile gewinnen lassen: Ph₂Si (Me)CH=CH⁺Bu > Ph₂SiCH=CH⁺Bu > Biphenyl > Ph₂Si(Me)CH₂CH₂⁺Bu >> Ph₃SiCH₂CH₂⁺Bu.

Entsprechend lassen sich aus einer Reaktion mit $Ph_3SiCH=CH_2$ in einem roten faserigen Reaktionsrückstand $Ph_3SiCH=CH^+Bu$ neben $Ph_3SiCH_2CH_2^+Bu$ nachweisen. Diese Ergebnisse zeigen in Übereinstimmung mit früheren Arbeiten [37], daß die Addition von Li⁺Bu an Phenylvinylsilane auch in Abwesenheit eines Chlor-Substituenten am Si erfolgt; bei Anwesenheit des Halogens lassen sich die unter (a) und (b) beschriebenen Reaktionsfolgen--z.B. die 2,3-LiH-Eliminierung aus **2** unter Bildung von Ph-Si(CDCH=CH⁺Bu--nicht beobachten.

Grundsätzlich ist auch der Si-gebundene Phenylrest in der Lage, mit Li¹Bu Reaktionen einzugehen. Dies wird durch folgende Experimente bewiesen: Die Umsetzung äquimolarer Mengen Diphenylsilan mit Li¹Bu führt schon bei Temperaturen zwischen – 78 und 0°C zur Bildung von Ph₂Si(H)¹Bu (24) in etwa 50% Ausbeute; mit zunehmendem Li¹Bu-Überschuß bildet sich 24 nahezu quantitativ. Wählt man dagegen das stöchiometrische Verhältnis Ph₂SiH₂/Li¹Bu von 1/2 und verschärft die Reaktionsbedingungen, läßt sich aus der roten Reaktionslösung neben geringen Mengen 24 das Ph-Substitutionsprodukt C₆H₄(C₆H₄⁺Bu)Si(H)¹Bu in ca. 10% Ausbeute. Der Zusatz von Me₃SiCl zur Li-haltigen Reaktionslösung (in n-Pentan) führt bei Raumtemperatur innerhalb von zwei Tagen, dagegen bei 50°C spontan zur Ausfällung von LiCl (neben LiH) und zur Entstehung von 24 und 25 neben C₆H₅(C₆H₄SiMe₃)Si(H)⁴Bu.

Aus einem Vergleich der Reaktionsbedingungen und der gebildeten Produkte wird deutlich, daß bei der Umsetzung von Vinylchlorsilan 1 mit Li¹Bu die Substitutionsreaktion SiCl \rightarrow Si¹Bu ebensowenig eine Rolle spielt wie die 2.3-LiH-Eliminierung aus 2 oder die Metallierung des Phenylrestes. Alleiniger Reaktionsweg ist die Li¹Bu-Addition an die Si-Vinylgruppe (zu 2): daran schließen sich intramolekulare 1.2-LiCl-Eliminierung (zu 3) oder intermolekulare Kopplungsreaktionen unter Bildung dimerer und oligo- oder polymerer Folgeprodukte an.

Experimenteller Teil und spektroskopische Charakterisierung der Reaktionsprodukte

Allgemeine Untersuchungsmethoden

Alle Umsetzungen wurden wegen der Hydrolyse- und/oder Sauerstoffempfindlichkeit der Chlorsilane und der lithiumorganischen Verbindungen in trockenen Lösungsmitteln und unter Stickstoff- bzw. Argonatmosphäre durchgeführt.

Die in dieser Arbeit beschriebenen neuen Verbindungen wurden GC- bzw. GC/MS- und verbrennungsanalytisch sowie durch die Aufnahme von Massen- und NMR(¹H,¹³C,²⁹Si)-Spektren identifiziert und z.T. durch Röntgenstrukturanalyse charakterisiert. Zu NMR-Untersuchungen wurden die Proben wahlweise in CDCl₃ oder C₆D₆ als Lösungsmittel und internen Standard vermessen. Die Zuordnung der ¹³C-NMR-Resonanzsignale erfolgte unter Nutzung des DEPT-Meßverfahrens (¹H-entkoppelt). Zur Eichung der ²⁹Si-Signale wurde TMS als Standard verwendet. Für die Auftrennung und spektroskopische Charakterisierung der Reaktionsprodukte standen Geräte zur Verfügung, die in einer früheren Arbeit detailliert beschrieben wurden [14].

Ausgangsverbindungen

Li¹Bu, (1.7 *M* Lösung in n-Pentan) und Vinyltrichlorsilan sind im Handel erhältlich. Chlordiphenylvinylsilan, Dimethylphenylvinylsilan, Methyldiphenylvinylsilan und Triphenylvinylsilan wurden durch Umsetzungen der entsprechenden Chlorvinylsilane mit Phenylgrignardreagenz dargestellt.

Darstellung der Cycloadditionsverbindungen des Diphenylneopentylsilaethens (3)

Sowohl der Versuchsaufbau als auch die Durchführung der Experimente zur Synthese der Cycloadditionsverbindungen von 3 sind sehr ähnlich. Deshalb wird die Arbeitsvorschrift in allgemeiner Form wiedergegeben. Detaillierte Angaben über eingesetzte Mengen an Reaktionspartnern und Lösungsmitteln, Reaktionstemperaturen, die Ausbeuten an Reaktionsprodukten sowie deren Siedepunkte sind Tab. 6 zu entnehmen. Dabei werden die durch Integration der Substanzpeaks im Gaschromatogramm ermittelten Ausbeuten (%) denen der isolierten Produkte gegenübergestellt. Im allgemeinen führen die hohen Destillationstemperaturen zur Isolierung der Produkte zu deutlichen Ausbeuteverlusten durch thermische Zersetzung; in der Reaktionslösung bereits vorliegende polymere Verbindungen werden GC/MS-analytisch nicht erfaßt. Dies begründet die z.T. drastischen Unterschiede in der Ausbeuteangabe.

In einem Dreihalskolben mit Tropftrichter, Magnetrührer und Rückflußkühler, werden Chlorvinylsilan 1 und das Dien zusammengegeben und die Reaktionstemperatur eingestellt. Dann wird die äquimolare Menge Li^tBu-Lösung zugetropft und die Reaktionsmischung langsam auf Raumtemperatur gebracht. Zur Vervollständigung der Reaktion wird noch weitere 12 h gerührt; anschließend werden Salz und Lösung über eine Schutzgasfritte voneinander getrennt. Nach der GC/MS-analytischen Untersuchung der Lösung wird das Lösungsmittel abdestilliert, der zumeist hochviskose Destillationsrückstand wird im Falle flüssiger Pro-

Umsetzungen de	r Kombination Cl	hlordiphenylvinylsi	ilan (1) _/	∕Li ^t Bu mit	Dienen			
Vinylchlorsilan (g/mmol)	Dien (g/mmol)	Lösungsmittel (ml)	(°C)	Li'Bu (mmol)	Produktverteilung (4) a	Produkte (g/mmol/ $\overline{c}\epsilon$) ^b	Kp. (°C/mbar)	Eigenschaften
4.88/20.0		Toluol 50	110	20.0	6 ($E/Z = 50/50$)	6: 9.7/18.2/91.2 E-6: 4.0/7.5/37.6		kristalliner Feststoff
12.2/50	2.3-Dimethyl- butadien 16.4/200.0	Pentan 700	- 78	\$0.0	7 (81): 8 (19)	7: 3.1/12.5/25	170/10 2	viskose Flüssigkeit
12.2/50	2-Methyl- butadien 13.6/200.0	Pentan 700	- 78	50.0	14 (65); 15, 16 (35)	14, 15, 16: 2.9/8.7/17	120/10 2	viskose Flüssigkeit
12.2/50.0	Norbornadien 46.0/500.0	Pentan 700	- 78	50.0	17 ($exo/endo = 46/10$) 18 (11); 6 ($E/Z = 19/13$)	17, 18: 1.0/2.8/5.6	$200/10^{-2}$	viskose Flüssigkeit; kristalliner Feststoff ^d
4.88/20.0	1.3-Cyclohexa- dien 8.0/100.0	Pentan 700	78	20.0	19 $(exo / endo = 21/8)$ 6 $(E/Z = 29/29)$	19 : 1.1 / 2.89 / 14.5	145/10 2 /	kristalliner Feststoff
36.6/150.0	Cylopentadien 35.0/500.0	Pentan 700	- 78	150.0	1 (82) 20 (<i>exo/</i> endo = 8/5)	4.98715.0710.0		kristalliner Feststoff
12.2750.0	Anthracen 44.57250	T oluol 500	60	50.0	21 (38): <i>E</i> - 6 (24) <i>Z</i> - 6 (24) Anthracen (6)	21. 6: $9.8_{\gamma} = z^{\beta}$		kristalliner Feststoff
" Durch Integrat isolierten Produk	tion der GC Signa Ac entspricht dem	ale der nicht aufge 1 unter a aufgelist	sarbeite eten. 7	ten Reakti Kristallisa	onslösung bestimmt $\frac{h}{h}$ Aash tion über mehrere Wocher a	ente der isolierten Produ uis C ₆ D ₆ * Sublimation a	kte nach Aufa ds kristalliner	rbeitung. [–] Verhältnis der Feststoff.

~ (1) / 1 (10. a factor de de la dimb. CELS 1 V_{ii} -

Tabelle 6

Tabelle 7

4	3.2 (s, 3H); 6.9–7.3 (m, 9H); 7.7–7.8 (m, 4H)
E-6	0.8 (s, 9H); 0.8-1.8 (m, 4H); 2.0 (m, 2H); 7.1-7.3 (m, 6H); 7.7-7.9 (m, 4H)
Z-6	0.79 (s)
7	0.8 (s(br), 12H); 1.6 (s(br), 4H); 1.7 (s(br), 4H); 7.1 (m, 4H); 7.6 (m, 6H)
9	0.97, 0.93 (s, je 9H, Si ¹ Bu); 1.09 (s, 9H, C ¹ Bu); 1.15-1.50 (m, 3H, CHCH ₂); 1.64, 1.72 (je
	s(br), 6H); 1.53–2.31 (m, 4H, CH ₂)
exo- 17	0.8 (s, 9H); 0.8-1.25 (m, 4H); 1.3-1.75 (m, 2H); 1.8 (s(br), 1H); 2.3 (s(br), 1H); 7.1-7.25 (m,
	6H); 7.4-7.8 (m, 4H)
18	AB-Teil: 6.0; 6.3 (³ J 19.0 Hz)
exo-19	0.92 (s); endo-19: 0.93 (s); Integralverhältnis 38/62
exo- 20	0.58 (s, 9H, ¹ Bu); 0.75 (dd, 1H, ² J 14.12, ³ J 6.06 Hz, SiCHCH ₂ ¹ Bu); 1.05 (m, 1H, ³ J 1.58 Hz,
	SiCHCH ₂ ¹ Bu); 1.33 (dd, 1H, ² J 14.08, ³ J 4.34 Hz, SiCHCH ₂ ¹ Bu); 1.74–1.78 (m, 2H,
	CHCH ₂ CH); 2.21 (m(tr), 1H, ³ J 3.15 Hz, CHCH=CHCHSi); 2.50 (m, 1H, SiCHCH=CHCH);
	5.50 (dd, 1H, ³ J 3.33, ³ J 5.53 Hz, SiCHCH=CH); 5.67 (dd, 1H, ³ J 2.91, ³ J 5.60 Hz,
	SiCHCH=CH); 6.81-7.03 (m, 6H); 7.32-7.49 (m, 4H)
22	0.15 (s, 6H, SiMe ₂); 0.79 (s, 9H, Si ¹ Bu); 1.2 (m, 4H, CH ₂ CH ₂); 7.16 (m, 5H, SiPh)
23	0.17 (s, 6H, SiMe ₂); 0.78 (s, 9H, Si ¹ Bu); 5.62/6.07 (AB, 2H, ³ J 21.0 Hz, CH=CH); 7.16 (m,
	5H, SiPh)
24	1.01 (s, 9H, ¹ Bu); 4.75 (s, 1H, SiH); 7.10–7.58 (m, 10H, Ph)

1 H-NMR-spektroskopische Daten (δ in ppm) einiger Reaktionsprodukte

25 1.02 (s, 9H, Si¹Bu); 1.08 (s, 9H, C¹Bu); 4.83 (s, 1H, SiH); 7.10–7.61 (m, 9H, Ph)

Tabelle 8

¹³ C- un	d ²⁹ Si-NMR-spektroskopische Daten der Reaktionsprodukte (δ (¹³ C)/ δ (²⁹ Si), δ in ppm)
4	52.36 (O-Me); 129.24, 131.35, 134.81, 136.19 (CH); 135.46 (CH=); 137.95 (=CH ₂)/~11.5
Z-6	15.76 (Si-CH); 29.58 (C(CH ₃) ₃); 31.99 (C(CH ₃) ₃); 40.48 (CH ₂ - ¹ Bu); 127.78, 128.42, 129.86, 134.78, 137.48 (CH), 134.01, 139.42 (C) / -1.33
E- 6	10.68 (Si- <i>C</i> H); 29.50 (C(<i>C</i> H ₃) ₃); 32.06 (C(CH ₃) ₃); 39.95 (<i>C</i> H ₂ - ⁴ Bu); 128.27, 129.77, 136.08 (CH): 135 54 (C)/2 71
7	17.50 (Si-CH); 19.31 (Si-CH ₂); 21.83, 23.64 (CH ₃); 30.22 (C(CH ₃) ₃); 32.44 (C(CH ₃) ₃); 40.43 (Si-CH-CH ₂); 44.30 (CH ₂ - ⁴ Bu); 124.81, 128.65, 136.53 (C); 128.11, 129.52, 135.33, 135.42, 135.61, 135.86 (CH)/ $-$ 8.39
8	29.11 (C(CH ₂) ₂); 31.33 (C(CH ₂) ₂); 114.12, 112.21 (=CH ₂)/ -7.08
9	16.8 (Si-CH ₂ -C=); 19.2 (Si-CH-CH ₂ 'Bu); 20.3, 21.7 (Si-C(CH ₃) ₃); 29.2, 29.9 (Si-C(CH ₃) ₃); 21.0, 22.6 (=C-CH ₃); 44.1 (CH ₂ -'Bu); 33.2 (CH ₂ -C(CH ₃) ₃); 30.9 (CH ₂ -C(CH ₃) ₃); 40.0 (Si-CH ₂ -CH ₃); 44.1 (CH ₂ -CH ₃); 128.8 (Si-CH ₃ -CCH ₃); 30.9 (CH ₂ -C(CH ₃)); 40.0 (Si-CH ₂ -CH ₂); 125.7 (Si-CH ₂ -CH ₃); 128.8 (Si-CH ₃ -CH ₃ -CH ₃); 20.9 (CH ₂ -C(CH ₃)); 40.0 (Si-CH ₂ -CH ₃); 21.7 (Si-CH ₃ -CH ₃); 21.8 (Si-CH ₃ -CH ₃); 21.7 (CH
	CH
exo-17	12.51, 13.22, 16.71 (HC CH); 23.13 (Si-CH-CH ₂ - ¹ Bu); 29.63 (Si-CH-CH-CH);
	41.11 (Si- <i>C</i> H); 52.4 (Si-CH- <i>C</i> H-CH); 32.00 (<i>C</i> H ₂); 45.62 (<i>C</i> H ₂ - ¹ Bu); 34.12 (<i>C</i> (<i>C</i> H ₃) ₃); 29.83 (<i>C</i> (CH ₃) ₃); 128.09, 129.50, 135.78, 136.01, 136.17, 136.40 (CH)/14.61; endo: -11.49
18	163.11; 117.48 (H C = C H)/4.50
19	21.70; 21.86 (Si- CH - CH_2 - ¹ Bu); 22.35 (Si- CH - CH_2); 22.51; 26.73 (Si- CH - $CH=$); 28.23 (Si- CH - CH_2 - CH_2); 29.84 (C(CH_3) ₃); 32.19 (C(CH_3) ₃); 38.16; 39.37 (Si- CH - CH); 41.52; 46.15 (CH_2 - ¹ Bu); 127.33, 127.59, 127.74, 127.88, 128.87, 128.99, 129.15, 133.64, 133.78, 134.87, 135.15, 135.28, 136.29, 136.43 (CH); 137.53 (C)/endo: -11.36; exo: -0.29
exo-20	20.84 (Si-CH-CH ₂ -'Bu); 29.74 (C(CH ₃) ₃); 32.21 (\dot{C} (CH ₃) ₃); 30.87 (Si-CH-CH=); 43.84 (CH ₂ -'Bu); 45.10 (Si-CH-CH ₂ -CH); 50.51 (Si-CH-CH); 127.86, 128.09, 129.49, 136.13, 136.30 (CH); 128.31, 134.89 (C); 135.47, 135.69 (HC=CH)/1.10; endo: -0.47
21	24.32 (Si-CH-CH ₂ - ¹ Bu); 30.06 (C(CH ₃) ₃); 32.39 (C(CH ₃) ₃); 40.64 (Si-CH); 43.70 (CH ₂ - ¹ Bu); 53.80 (Si-CH-CH); 124.62, 125.51, 125.97, 126.34, 126.60, 126.65, 127.24, 127.65, 127.93, 129.55, 135.42, 136.21, 136.44, 136.96 (CH); 133.61, 134.57, 140.12, 140.51, 141.66, 143.02 (C)/-8.42

2	ŧ	ł	
	1	'	

Tabelle 9

 $M^{+}/I(\mathcal{G})$ Basision (m/r)/I (%) Charakteristische Fragmentionen (100%)179 5 374/2.5 299/11/269/30/237/29/195/62 E-6 475/84.4 391/17.3 377/16.8 301/16.1 259/89.1 209/91.9 532/11.2 183 Z-6 532/8.3 183 475/66.2 433/19.1 377/14.0 301/14.3 259/73.3 209/75.0 348/53 291715.8 279760.0 214718.1 209740.3 183760.3 105785.9 7 271 267/10.3 263/15.7 209/12.2 105: 40.3 8 348/11 183 9 308/373 153/58 251/57 167 / 48 59 / 33 57 / 22 125 / 21 73 59/32 167/27 99/21 115: 17 125/15 85:11 251, 8 10 3087 < 157 73/56 83/32 99/22 113/20 41/16 127/12 278/2 308 / < 111 73 99/30 141/28 57/26 115/24 59/20 113/18 307/3 12 364/1115/52 59/17 57/14 101/13 227 (\$ 127/8 309/2 73 13 366/257 256/14/209/62/183/70/105/51/57/36 14/15/16 334/3 281/58.7.251/13.7.223/14.8.105/38.7 exo-17 358/3 301 358/4 281/40.3/250/14.1/222/20.8/105/29/9 301 endo-17 265 301/11.1/274/13.2/215/33.8/105/36.6 18 266/10.0/210/38.3/183/83.7/162/86.6/105/87.4 endo-19 346/36,4 -11 266/13.1/209/37.8/183/74.2/162/02.0/105/48.7 030-19 346/50.3 41 251/23.7 209/81.1 183/59.9 105 - \$7.4 66 (14.8 endo-20 332/100 332 255/20.0/209/99.3/183/74.7/66/38.5 332/82.2 105 exo-20 21 444/18 209266/5 183/30 178/25 105/19 135 22 220/5142/14/205/13/190/12/154/6 121/18/105/12/142/11/154/8/203/6 135 23 218/2 24 240/6183 181/14/105/14/79/4 25 296/4239 223/8/209/8/105/10

Massenspektren der Reaktionsprodukte-

dukte bei 10⁻² mbar destilliert; handelt es sich um kristalline Verbindungen, wird der Rückstand durch Umkristallisieren aus n-Pentan gereinigt.

Spektroskopische Charakterisierung der Reaktionsprodukte

¹*H-NMR-Spektren (siehe Tab. 7).* Die ¹*H-NMR-Spektren mancher Cycload*dukte von **3** sind derart komplex—z.T. bedingt durch Messungen an nicht auftrennbaren Isomerenmischungen—daß für einige Verbindungen genaue Zuordnungen nicht möglich sind. Deshalb wird für solche Derivate lediglich die chemische Verschiebung δ den integralen Anteilen gegenübergestellt. Aus der vergleichsweise einfachen Zuordnung der ¹³C- und ²⁹Si-NMR-Spektren, gekoppelt mit GC/MS-Untersuchungen. ist die Identität der Reaktionsprodukte iedoch abgesichert.

¹³C- und ²⁹Si-NMR-spektroskopische Daten (siehe Tab. 8).

Zusammenstellung der durch GC / MS-Kopplung ermittelten massenspektroskopischen Fragmentierung der Reaktionsprodukte. In Tab. 9 worden die Intensitäten der Molekülionenpeaks und die Basisfragmente (100%) der Produkte den jeweils intensivsten Fragmentionen gegenübergestellt.

Elementaranalysen (siehe Tab. 10).

Einkristall-Röntgenstrukturanalysen des Disilacyclobutans E-6 und des Cycloadduktes exo / endo-19

Tabelle 3 enthält die kristallographischen Daten und die Meßbedingungen. Verbindung E-6 kristallisiert aus n-Pentan in farblosen Prismen. 19 aus dem

Verbindung	С	Н	
6	81.05	7.97	
	(81.20)	(8.27)	
7,8	82.79	9.44	
	(82.76)	(9.20)	
9	77.52	12.54	
	(77.92)	(12.99)	
17, 18	83.07	8.50	
	(83.79)	(8.38)	
19	82.19	8.71	
	(83.20)	(8.67)	
20	82.77	8.37 Si; 8.72	
	(83.13)	(8.43) (8.43)	

Tabelle 10 Ergebnisse der C,H-Verbrennungsanalysen (Gef. (ber.) (%))

gleichen Lösungsmittel in farblosen Rhomben. Die Gitterkonstanten sind auf der Basis von 25 hochindizierten Reflexlagen verfeinert. Die Sammlung der Intensitäten erfolgte bei Raumtemperatur auf einem automatischen Vierkreisdiffraktometer (CAD4 Enraf-Nonius; Graphitmonochromator) bei variabler Scan-Breite. Die Strukturlösung gelang mit direkten Methoden und Differenz-Fourier-Technik. Die Wasserstofflagen sind frei verfeinert. Nur die Wasserstoffatome in E-6 an C5 und C6 bzw. C7 und C8 sind berechnet und erhielten unter Berücksichtigung der Fehlordnung je einen kollektiven Auslenkungsparameter; für die Wasserstoffatome an C4 in 19 wurde nur ein kollektiver Auslenkungsparameter verfeinert. Die anomale Dispersion ist berücksichtigt [38,39]. Alle Rechnungen erfolgten im Programmsystem STRUX-III [40] mit den Programmen MULTAN 11/82 [41], ORTEP II [42], SCHAKAL [43], SDP [44]. Als Rechner standen eine Micro-VAX 3100 und eine VAX 11/730 zur Verfügung. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55615, der Autoren und des Zeitschriftenzitats angefordert werden, oder bei E.H.

Dank

Diese Arbeit wurde durch die Volkswagenstiftung, dem Fonds der Chemischen Industrie und durch Chemikalienspenden der Firmen Wacker-Chemie GmbH und Chemmetall gefördert. Hierfür bedanken wir uns an dieser Stelle.

Literatur

- 1 P.R. Jones und T.F.O. Lim, J. Am. Chem. Soc., 99 (1977) 2013.
- 2 P.R. Jones und T.F.O. Lim, J. Am. Chem. Soc., 99 (1977) 8447.
- 3 P.R. Jones, T.F.O. Lim, M.L. McBee und R.A. Pierce, J. Organomet. Chem., 159 (1978) 99.
- 4 P.R. Jones, T.F.O. Lim und R.A. Pierce, J. Am. Chem. Soc., 102 (1980) 4970.
- 5 P.R. Jones, M.E. Lee und L.T. Lin, Organometallics, 2 (1983) 1039.
- 6 P.R. Jones, A.H.-B. Cheng und T.E. Albanesi, Organometallics, 3 (1984) 78.
- 7 P.R. Jones, J.M. Rozell, Jr. und B.M. Campbell, Organometallics, 4 (1985) 1321.

- 8 N. Auner, Z. Anorg, Allg. Chem., 558 (1988) 55.
- 9 N. Auner, J. Organomet. Chem., 336 (1987) 83.
- 10 N. Auner, Z. Anorg, Allg. Chem., 558 (1988) 87.
- 11 N. Auner, J. Organomet, Chem., 353 (1988) 275.
- 12 N. Auner, J. Grobe, T. Schäfer, B. Krebs und M. Dartmann, J. Organomet, Chem., 363 (1989) 7

and the second second

- 13 N. Auner, J. Organomet, Chem., 377 (1989) 175.
- 14 N. Auner und C. Seidenschwarz, Z. Naturforsch., Teil B. 45 (6) (1990) 909.
- 15 J. Grobe, H. Schröder und N. Auner, Z. Naturforsch., Teil B, 45 (6) (1990) 785.
- 16 N. Auner und R. Gleixner, J. Organomet. Chem., 393 (1990) 33.
- 17 N. Auner, Habilitationsschrift, Münster 1987.
- 18 N. Auner und A. Wolff, in Vorbereitung.
- 19 N. Auner, E. Würthwein und G. Henkel, in Vorbereitung.
- 20 N. Auner, R. Gleixner, G. Henkel, E. Herdtweck, A. Wolff und W. Ziche, in Vorbereitung,
- 21 G. Fritz und J. Thomas, Z. Anorg. Allg. Chem., 514 (1984) 61.
- 22 L.V. Vilkov, M.M. Kusakov, N.S. Nametkin und V.D. Oppenheim, Dokl. Akad. Nauk SSSR (Engl. Transl.), 13 (1968) 830.
- 23 B. Rempfer, G. Pfafferott, H. Oberhammer, N. Auner und J.E. Boggs, Acta Chem. Scand., Ser. A, 42 (1988) 352.
- 24 K. Peters, IXth International Symposium on Organosilicon Chemistry, Edinburgh, 1990. Abstracts part 8.2.
- 25 (a) N. Wiberg, H. Schuster, A. Simon und K. Peters, Angew. Chem., Int. Ed. Engl., 25 (1986) 79; (b) A. Schäfer, M. Weidenbruch, K. Peters und H.G. von Schnering, Angew. Chem., Int. Ed. Engl., 23 (1984) 302; (c) M. Weidenbruch, B. Flintjer, K. Peters and H.G. von Schnering, Angew. Chem., Int. Ed. Engl., 25 (1986) 1129.
- 26 (a) E.F. Ullmann, Chem. Ind. (London), (1958) 1173; (b) R.C. Cookson, J. Dance und J. Hudec, J. Chem. Soc., (1964) 5416; (c) T.J. Infariello, T.F. Mich und P.S. Miller, Tetrahedron Lett., (1966) 2293; (d) R.B. Woodward und R. Hoffmann, Angew. Chem., 81 (1965) 797; Angew. Chem., Int. Ed. Engl., 8 (1969) 781; (e) Y. Kobuke, T. Sugimoto, J. Furukawa und T. Fulno, J. Am. Chem. Soc., 94 (1972) 3633.
- 27 T. Sasaki, S. Eguchi, M. Sugimoto und F. Hibi, J. Org. Chem., 37 (1972) 2317.
- 28 N. Auner, C. Seidenschwarz und N. Sewald, Organometallics, im Druck.
- 29 J. Grobe und J. Szameitat, Z. Naturforsch., Teil B, 43 (1988) 427.
- 30 E. Kessler, J. Heterocycl. Chem., 17 (1980) 1113.
- 31 G.E. Keck und S.A. Fleming, Tetrahedron Lett., 4763 (1978).
- 32 (a) C. Larson und D.N. Hopp, J. Org. Chem., 45 (1980) 3713; (b) K. Friedrich und H.-J. Gallmeier. Tetrahedron Lett., (1988) 2971.
- 33 M. Weidenbruch, A. Schäfer und K.-L. Thom, Z. Naturforsch., Teil B. 38 (1983) 1695.
- 34 N. Auner, C. Seidenschwarz, H. Herdtweck und N. Sewald, Angew. Chem., 103 (1991) 425; Angew. Chem., Int. Ed. Engl., 30 (1991) 444.
- 35 N. Auner und H. Selzle, unveröffentlicht.
- 36 B.R. Yoo, M.E. Lee und I.N. Jung, J. Organomet. Chem., 410 (1991) 33.
- 37 N. Auner, J. Organomet. Chem., 336 (1987) 59.
- 38 D.T. Cromer und J.T. Waber, International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, England, 1974, Table 2.2B.
- 39 D.T. Cromer, International Tables for X-ray Crystallography. Vol. IV. Kynoch Press, Birmingham, England, 1974, Table 2.3.1.
- 40 P. Kiprof, E. Herdtweck, R.E. Schmidt, M. Birkhahn und W. Massa, STRUN-III, ein Programmsystem zur Verarbeitung von Röntgendaten, TU München und Universität Marburg, Deutschland, 1985/1987.
- 41 P. Main, S.J. Fiske, S.E. Hull, L. Lessinger, G. Germain, J.-P. Declercq und M.M. Woolfson, MULTAN 11/82, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, University of York, England, and Louvain, Belgium, 1982.
- 42 C.K. Johnson, ORTEP II, Report ORNL-5138. Oak Ridge National Laboratory. Oak Ridge, TN, USA, 1976.
- 43 E. Keller, SCHAKAL, ein Programm f
 ür die graphische Darstellung von Molek
 ülmodellen, Kristallographisches Institut, Universit
 ät Freiburg, Deutschland, 1986/1988.
- 44 B.A. Frenz, Enraf-Nonius SDP-PLUS Structure Determination Package, Version 4.0, Enraf-Nonius, Delft, The Netherlands, 1988.